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Abstract. Urban regions are responsible for emitting significant amounts of fossil fuel carbon dioxide (FFCO2), whose emissions 

at finer, city scales are more uncertain than those aggregated at the global scale. Carbon-observing satellites may provide 

independent top-down emission evaluations and compensate for the sparseness of surface CO2 observing networks, especially in 

urban areas. Although some previous studies have attempted to derive urban CO2 signals from satellite column-averaged CO2 data 

(XCO2) using simple statistical measures, less work has been carried out to link upwind emission sources to downwind atmospheric 5 

columns using atmospheric models. In addition to Eulerian atmospheric models that have been customized for emission estimates 

over specific cities, the Lagrangian modeling approach—in particular, the Lagrangian Particle Dispersion Model (LPDM) 

approach—has the potential to efficiently determine the sensitivity of downwind concentration changes to upwind sources. 

However, when applying LPDMs to interpret satellite XCO2, several issues—namely, uncertainties in anthropogenic XCO2 signals 

due to receptor configurations and errors in atmospheric transport and background XCO2—have yet to be addressed.  10 

In this study, we present a modified version of the Stochastic Time-Inverted Lagrangian Transport (STILT) model, “X-STILT”, 

for extracting urban XCO2 signals from NASA’s Orbiting Carbon Observatory 2 (OCO-2) XCO2 data. X-STILT incorporates 

satellite profiles and provides comprehensive uncertainty estimates towards urban XCO2 enhancements for selected satellite 

soundings. Several methods to initialize receptors/particle setups and determine background XCO2 are presented and discussed via 

sensitivity analyses and comparisons. To illustrate X-STILT’s utilities and applications, we examined five OCO-2 overpasses over 15 

Riyadh, Saudi Arabia, during a two-year time period and performed a simple scaling factor-based inverse analysis. As a result, the 

model is able to reproduce most observed XCO2 enhancements. Conservative error estimates show that the 68 % confidence limit 

of XCO2 uncertainties due to transport and emission uncertainties contribute to ~29 % and ~25 % of the averaged latitudinally-

integrated urban signals, respectively, over five overpasses, given meteorological fields from the Global Data Assimilation 

System (GDAS). Additionally, a sizable negative “bias” of 0.56 ppm in background derived from a previous study employing 20 

simple statistics (daily median over a regional domain) leads to positive biases of 43 % in mean observed urban signal and 68 % 

in posterior scaling factor, from a simple inversion analysis. Based on these results, we foresee X-STILT serving as a tool for 

interpreting column measurements, estimating urban enhancement signals, and carrying out inverse modeling to improve 

quantification of urban emissions.  
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1 Introduction 

Carbon dioxide (CO2) is a major greenhouse gas in the atmosphere in terms of radiative forcing, with its concentration increasing 

significantly over the past century (Dlugokencky and Tans, 2015). The largest contemporary net source of CO2 to the atmosphere 

over the decadal time scales is anthropogenic emissions, namely from fossil fuel burning and net land-use change (Ciais et al., 

2013). Urban areas play significant roles in the global carbon cycle and are responsible for over 70 % of the global energy-related 5 

CO2 emissions (Rosenzweig et al., 2010). Global fossil fuel CO2 (FFCO2) emission uncertainty (8.4%, 2𝜎𝜎, Andres et al., 2014) 

may be smaller than other less-constrained emissions such as of wildfire (Brasseur and Jacob, 2017). Still, uncertainties associated 

with national FFCO2 emissions derived from bottom-up inventories typically range from 5–20 % per year (Andres et al., 2014). 

These estimated emission uncertainties result primarily from differences in emission inventories, such as the emission factors and 

energy consumptions data used. Moreover, heightened interests in regional- and urban-scale emissions require modelers to 10 

investigate FFCO2 emissions at finer spatiotemporal resolutions (Lauvaux et al., 2016; Mitchell et al., 2018) as well as uncertainties 

in gridded emissions (Andres et al., 2016; Gately and Hutyra, 2017; Hogue et al., 2016; Oda et al., 2018). Dramatic increases in 

emission uncertainties are associated with finer scales, with these uncertainties being mostly biases due to different methods 

disaggregating national-level emissions (Marland, 2008; Oda and Maksyutov, 2011). For instance, emission uncertainties of 20 % 

at regional scales increased to 50–250 % at city scales even for the northeastern United States (Gately and Hutyra, 2017), an area 15 

that is considered relatively “data-rich”.  

Given the large differences/discrepancies in emission inventories at urban scales, the use of atmospheric top-down constrain 

could be helpful for quantifying urban emissions and possibly providing a monitoring support (Pacala et al., 2010). Observed 

concentrations used in the top-down approach can often be obtained from ground-based instruments (Kim et al., 2013; Mallia et 

al., 2015; Wunch et al., 2011) and aircraft observations (Gerbig et al., 2003; Lin et al., 2006). Each type of measurement offers 20 

valuable information and has both advantages and disadvantages. Most ground-based measurements provide reliable, continuous 

CO2 concentrations from fixed locations/heights. Unfortunately, current ground-based observing sites are too sparse to constrain 

urban emissions around the globe. Most National Oceanic and Atmospheric Administration (NOAA) sites are designed to measure 

background concentrations and few others aim at measuring concentration changes from few vertical levels within the planetary 

boundary layer (PBL). Other than a few notable examples (Feng et al., 2016; Lauvaux et al., 2016; Mitchell et al., 2018; Verhulst 25 

et al., 2017; Wong et al., 2015; Wunch et al., 2009), near-surface CO2 measurements may not be available over many other cities 

around the world. Alternatively, airborne measurements from field campaigns provide better vertical and regional coverages 

(Cambaliza et al., 2014). Yet, continuous airborne operations over months to years are often impractical due to limited resources, 

which limits researchers’ capability to track temporal variability of anthropogenic carbon emissions (Sweeney et al., 2015).  

The carbon cycle community has entered a new era with advanced carbon-observing satellites—i.e., Greenhouse gases 30 

Observing SATellite (GOSAT; Yokota et al., 2009), TanSat (Liu et al., 2013) and Orbiting Carbon Observatory (OCO-2) satellite 

(Crisp et al., 2012)—routinely in orbit to measure variations of atmospheric column-averaged CO2 mole fraction (XCO2). Although 

most carbon-observing satellites have revisit times of multiple days (e.g., 3 days for GOSAT and 16 days for OCO-2), their global 

coverage, large number of retrievals and multi-year observations can fill the gaps of sparse surface observing networks. Eventually, 

space-borne instruments will help reduce emission uncertainties and benefit urban emissions analysis, especially over cities with 35 

no surface observations (Duren and Miller, 2012; Houweling et al., 2004; Rayner and O’Brien, 2001).  

Previous studies have demonstrated the potential for detecting and deriving urban CO2 emission signals from satellite CO2 

observations, in the form of XCO2 enhancements above the background, without making use of much atmospheric transport 

information (Hakkarainen et al., 2016; Kort et al., 2012; Schneising et al., 2013; Silva and Arellano, 2017; Silva et al., 2013). 
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However, the linkage between their derived urban CO2 emission signals and upstream sources is tenuous, as downwind XCO2 can 

be enhanced by not only near-field upwind urban activities (e.g., traffic, houses, and power plants/industries), but regional-scale 

advection of upwind sources/sinks as well. Simulations using transport models are able to isolate the portion of satellite 

observations influenced by urban regions from the portion affected by natural fluxes or long-range transport (e.g., Ye et al., 2017). 

Therefore, accurate knowledge of atmospheric transport is essential in top-down assessment. As importantly, transport modeling 5 

is a necessary step within inverse modeling, which can help improve fossil fuel emission estimates and shed lights on CO2 emissions 

monitoring network (Kort et al., 2013; Lauvaux et al., 2009). Uncertainties in transport modeling have been identified as a 

significant error source that affects inferred surface fluxes (Peylin et al., 2011; Stephens et al., 2007; Ye et al., 2017). Yet, by 

increasing the examined satellite overpass numbers, uncertainties from atmospheric inversions due to non-systematic transport 

errors in emission estimates can be reduced and confined to 5 and 15 % over Los Angeles and Riyadh (Ye et al., 2017).  10 

Two main approaches can be considered for atmospheric transport modeling. Eulerian models, in which fixed grid cells are 

adopted and CO2 concentrations within the grid cells are calculated by forward numerical integrations, have been widely utilized 

and customized to understand urban emissions and quantify model uncertainties over specific metropolitan regions worldwide 

(Deng et al., 2017; Lauvaux et al., 2013; Palmer, 2008; Ye et al., 2017). The Lagrangian approach, especially the time-reversed 

approach in which atmospheric transport is represented by air parcels moving backward in time from the measurement location 15 

(“receptor”), is efficient in locating upwind sources and facilitating the construction and calculation of the “footprint” (e.g., Lin et 

al., 2003) or “source-receptor matrix” (Seibert and Frank, 2004)—i.e., the sensitivity of downwind CO2 variations to upwind fluxes.  

In particular, the receptor-oriented Stochastic Time-Inverted Lagrangian Transport (STILT) model, one of the Lagrangian 

Particle Dispersion Models (LPDM), has the ability to more realistically resolve the sub-grid scale transport and near-field 

influences (Lin et al., 2003). STILT has been used to interpret CO2 observations within the PBL (Gerbig et al., 2006; Kim et al., 20 

2013; Lin et al., 2017) and, in recent years, to analyze column observations, i.e., XCO2 (Fischer et al., 2017; Heymann et al., 2017; 

Macatangay et al., 2008; Reuter et al., 2014). Among STILT-based column studies, most aim at either natural CO2 sources and 

sinks like wildfire emissions and biospheric fluxes, or anthropogenic emissions at regional or state scales. Very few studies focus 

on city-scale FFCO2 using column data and LPDMs. Moreover, when applying LPDMs to interpret column CO2 data, three key 

issues have hitherto yet to be carefully examined and will be addressed in this paper:  25 

I. Uncertainty of modeled XCO2 enhancements due to model configurations. Very few studies have examined model 

uncertainties resulted from model configurations—i.e., receptors and particles in LPDMs. Reuter et al. (2014) suggested 

negligible uncertainty on modeled biospheric XCO2 due to STILT setups. Sensitivity tests have been performed regarding the 

uncertainty caused by STILT particle number releasing from one fixed level on modeled wildfire CO concentration (Mallia et 

al., 2015). However, when it comes to representing an atmospheric column using particle ensemble and modeling 30 

anthropogenic enhancements, minimal guidance on setup of LPDMs for modeling XCO2 has been provided in prior studies.  

II. Lack of detailed analysis on impact of transport errors on XCO2 simulations. Flux inversions, e.g., Bayesian Inversion 

(Rodgers, 2000) involving LPDMs have been widely adopted to constrain emissions. Transport errors are ignored or assumed 

to be diagonal in some inversion studies, which leads to conclusions that are biased or overly optimistic (Lin and Gerbig, 2005; 

Stephens et al., 2007). Although approaches on quantifying transport errors have been proposed (Gerbig et al., 2003; Lin and 35 

Gerbig, 2005), very few studies (Lauvaux and Davis, 2014; Macatangay et al., 2008) focus on quantifying transport errors 

when interpreting XCO2 data. Transport uncertainty of LPDMs and its impact on inverse estimates of FFCO2 emissions should 

undergo more sophisticated calculations and evaluations.  
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III. Determining background XCO2 and characterizing its uncertainties. Here we define background value as the CO2 

“uncontaminated” by fossil fuel emissions from the city of interest. As urban emission signals are defined as the enhancements 

of XCO2 over the background, errors in the background value introduce first-order errors into the derived urban XCO2 signal 

from total XCO2, with such errors propagating directly into fluxes calculated from atmospheric inversions (e.g., Göckede et 

al., 2010). Consequently, background determination is another critical task. One method in determining model boundary 5 

conditions of various species using LPDMs is the “trajectory-endpoint” method that establishes the background based on CO2 

extracted at endpoints of back trajectories based on modeled regional/global concentration fields (Lin et al., 2017; Macatangay 

et al., 2008; Mallia et al., 2015). Most of these studies aim at extracting relatively large CO2 changes at a fixed level within 

the PBL or due to large emissions such as of wildfire, with relatively large signal-to-noise ratio. However, for studying XCO2 

that is less variable than near-surface CO2 (Olsen and Randerson, 2004), potential errors in modeled concentration fields and 10 

atmospheric transport may pose more significant adverse impact on derived urban signals. Other ways of defining background 

include geographic definitions (Kort et al., 2012; Schneising et al., 2013) and simple statistical estimates (Hakkarainen et al., 

2016; Silva and Arellano, 2017). In this study, we compare simple statistical background estimates against a new background 

determination method that combines OCO-2 observations and the STILT-simulated atmospheric transport.  

In this paper, we attempt to address the aforementioned issues by extending STILT with column features and comprehensive 15 

error analyses, referred to as the column-STILT, “X-STILT”. We illustrate the model’s applications in extracting urban XCO2 

signals from OCO-2 retrievals (Fig. 1) and evaluate model performances via a case study focusing on Riyadh, Saudi Arabia. Riyadh 

with population of over 6 million by 2014 (WUP 2014) is chosen as the city of interest due to its low cloud interference, limited 

vegetation coverage, and isolated location in a barren area, which leads to higher data recovery rates and facilitates the background 

determination. Saudi Arabia has the largest CO2 emission among Middle Eastern countries and ranks eighth globally in 2016 20 

(Boden et al., 2017; BP, 2017; UNFCCC, 2017). We examine several satellite overpasses and focus on a small spatial domain 

adjacent to Riyadh for each overpass.  

2 Data and methodology 

2.1 STILT-based approach for XCO2 simulation (“X-STILT”) 

Before demonstrating model details, Fig. 1 highlights several X-STILT characteristics, e.g., the account of column transport errors, 25 

background XCO2 approximations, and the identification of upwind emitters using backward-time runs from column-receptors.  

Sensitivities of the satellite sensor towards different parts of the atmospheric column are characterized by the averaging kernel 

profiles, which evaluates the relative portion between the “true” profile (𝐶𝐶𝐶𝐶2,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) observed by satellite and prior profile (𝐶𝐶𝐶𝐶2,𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡). 

The averaging kernel in OCO-2 product is the product of OCO-2’s normalized averaging kernel (AKnorm) and pressure weighting 

(PW) function. Column AKnorm peaks near the surface and exhibits values near unity throughout most of the troposphere (Boesch 30 

et al., 2011). Less-than-unity AKnorm values are mainly found aloft, which requires additional information from prior CO2 profiles 

(Fig. 2a). To yield “apple-to-apple” comparisons against OCO-2 retrieved XCO2, modeled column-averaged CO2 concentrations 

should be properly weighted using satellite’s weighting functions (Basu et al., 2013; Lin et al., 2004). Thus, the final simulated 

XCO2 (𝑋𝑋𝐶𝐶𝐶𝐶2.𝑠𝑠𝑝𝑝𝑠𝑠.𝑎𝑎𝑎𝑎) are weighted between model-derived CO2 profiles and OCO-2 a priori profiles (O’Dell et al., 2012): 

𝑋𝑋𝐶𝐶𝐶𝐶2.𝑠𝑠𝑝𝑝𝑠𝑠.𝑎𝑎𝑎𝑎 = ∑ {𝐴𝐴𝐴𝐴𝑛𝑛𝑝𝑝𝑡𝑡𝑠𝑠,𝑛𝑛 × 𝑃𝑃𝑃𝑃𝑛𝑛 × 𝐶𝐶𝐶𝐶2.𝑠𝑠𝑝𝑝𝑠𝑠,𝑛𝑛
𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑛𝑛
𝑛𝑛=1 + �𝐼𝐼 − 𝐴𝐴𝐴𝐴𝑛𝑛𝑝𝑝𝑡𝑡𝑠𝑠,𝑛𝑛� × 𝑃𝑃𝑃𝑃𝑛𝑛 × 𝐶𝐶𝐶𝐶2.𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡,𝑛𝑛},          (1) 35 

where I is the identity vector and n stands for X-STILT release levels (Sect. 2.1.1). The first summation on the right-hand side in 

Eq. (1) is further comprised of the modeled XCO2 enhancements due to FFCO2 emissions (Sect. 2.1.2) and background XCO2 
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(Sect. 2.4). Since X-STILT levels may not necessarily match the prescribed 20 levels in the retrieval, we perform interpolations 

on AKnorm, PW and 𝐶𝐶𝐶𝐶2,𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡  from retrieval levels to model levels. Specifically, satellite profiles are treated as continuous functions 

and then linearly interpolated to model levels (Fig. 2). We then weight the linearly interpolated PW functions through some scaling 

factors—ratios of the pressure difference between adjacent model levels over that between adjacent retrieval levels (Fig. 2b).  

2.1.1 X-STILT setup (“column receptors”) 5 

The linkage between the observed XCO2 concentration by a given OCO-2 sounding and upwind carbon sources and sinks is 

determined by atmospheric transport. We adopt the STILT model to describe this connection. Fictitious particles, representing air 

parcels, are released from a “receptor” (location of interest) and are dispersed backward in time. The Lagrangian air parcels within 

STILT are transported along with the mean wind (u�), turbulent wind component (𝒖𝒖′), and other meteorological variables, which 

are derived from Eulerian meteorological fields. In this study, we used meteorological fields simulated by the Weather Research 10 

and Forecasting (WRF; Skamarock and Klemp, 2008) and the 0.5° × 0.5° Global Data Assimilation System (GDAS; Rolph et al., 

2017; Stein et al., 2015). When WRF fields were available, we performed two experiments of model simulations using two sets of 

meteorology fields—i.e., GDAS and WRF (Fig. 4). Proper WRF configurations including nesting setup, schemes for PBL, and 

surface layer for Riyadh have been carefully evaluated in Ye et al. (2017). Our primary focus is to assess the resulting errors given 

the choice of a particular wind field (i.e., GDAS 0.5°), rather than to carry out analyses of differences between WRF and GDAS.  15 

To represent the air arriving at the atmospheric column of each OCO-2 sounding, we release air parcels from multiple vertical 

levels, “column receptors” (Fig. 3e), at the same lat/lon as satellite sounding at the same time and allow those parcels to disperse 

backward for 72 hours (see Appendix D2 for model impact from backward durations). To reduce computational cost, the air column 

is only simulated up to a certain height (hereinafter referred to as the maximum release height of air parcels above ground level in 

meters—MAXAGL). Sensitivity tests are performed regarding different setups of column receptors (Sect. 2.5). Our goal is to 20 

compare an overall modeled versus observed anthropogenic signals within a small latitudinal range for each overpass (Sect. 3.5.1). 

We select dozens of soundings with quality flags equal zero (QF=0) that implies selected observations have passed the cloud and 

aerosol screens (with removal of albedo > 0.4), and their retrievals have converged (Mandrake et al., 2013; Patra et al., 2017). 

Specifically, about 10–20 soundings are selected for simulations over every 0.5° latitude.  

2.1.2 Modeling changes in XCO2 (“column footprints” × fluxes) 25 

Air parcels undergo vertical mixing within the PBL with concentrations modified by surface emissions. The sensitivity of a 

measurement site’s concentration to potential upwind fluxes is referred to as the “source-receptor matrix” (Seibert and Frank, 

2004), or, equivalently, the “footprint” (Lin et al., 2003). Longer the time an air parcel p spends (∆𝑡𝑡𝑝𝑝,𝑝𝑝,𝑗𝑗,𝑎𝑎) in a grid volume (i, j, k) 

from the ground to a surface dilution height h over timestamp 𝑡𝑡𝑠𝑠, higher its footprint value f will be (Lin et al., 2003):  

𝑓𝑓�𝑥𝑥𝑡𝑡 , 𝑡𝑡𝑡𝑡�𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑗𝑗 , 𝑡𝑡𝑠𝑠� ∝   1
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡

∑ ∆𝑡𝑡𝑝𝑝,𝑝𝑝,𝑗𝑗,𝑎𝑎
𝑁𝑁𝑡𝑡𝑝𝑝𝑡𝑡
𝑝𝑝=1 ,                  (2) 30 

where 𝑁𝑁𝑡𝑡𝑝𝑝𝑡𝑡 denotes the total number of air parcels. (𝑥𝑥𝑡𝑡 , 𝑡𝑡𝑡𝑡) and (𝑥𝑥𝑝𝑝 , 𝑦𝑦𝑗𝑗) describe model receptors and potential upstream sources, 

respectively. The vertical dilution height h is set to be half of the PBL heights (zi); and footprint value is insensitive to h (Gerbig 

et al., 2003). Then, multiplying the footprint by certain gridded emissions yields change in CO2 at a downwind receptor. Since we 

deal with column-averaged CO2 concentrations, modified changes in XCO2 take the form of,  

𝑋𝑋𝐶𝐶𝐶𝐶2,𝑠𝑠𝑝𝑝𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡/𝑠𝑠𝑝𝑝𝑛𝑛𝑎𝑎 = 𝐸𝐸�𝑥𝑥𝑝𝑝 , 𝑦𝑦𝑗𝑗 , 𝑡𝑡𝑠𝑠� × ∑ 𝑓𝑓𝑤𝑤�𝑥𝑥𝑛𝑛.𝑡𝑡 , 𝑡𝑡𝑛𝑛.𝑡𝑡�𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑗𝑗 , 𝑡𝑡𝑠𝑠�𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑛𝑛
𝑛𝑛=1 ,        (3) 35 
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where E broadly represents CO2 emissions or fluxes (Sect. 2.3) and (𝑥𝑥𝑛𝑛.𝑡𝑡 , 𝑡𝑡𝑛𝑛.𝑡𝑡) denotes the column receptors. We define the entire 

term of ∑  𝑓𝑓𝑤𝑤𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑛𝑛
𝑛𝑛=1  as the “weighted column footprint” that describes the sensitivity of changes in column concentration due to 

potential upstream sources/sinks and incorporates satellite profiles:  

𝑓𝑓𝑤𝑤�𝑥𝑥𝑛𝑛.𝑡𝑡 , 𝑡𝑡𝑛𝑛.𝑡𝑡�𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑗𝑗 , 𝑡𝑡𝑠𝑠� ∝   1
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡

∑  ∆𝑡𝑡𝑝𝑝,𝑝𝑝,𝑗𝑗,𝑎𝑎  ×𝑁𝑁𝑡𝑡𝑝𝑝𝑡𝑡
𝑝𝑝=1  𝐴𝐴𝐴𝐴𝑛𝑛𝑝𝑝𝑡𝑡𝑠𝑠(𝑛𝑛, 𝑟𝑟)  ×  𝑃𝑃𝑃𝑃(𝑛𝑛, 𝑟𝑟).       (4) 

For instance, modeled XCO2 enhancements due to FFCO2 derive from the convolution of spatially-varying 𝑓𝑓𝑤𝑤  and ODIAC 5 

emissions (Sect. 2.3.1). Also, we account for modeled uncertainties that includes errors in prior FFCO2 emissions (Sect. 2.3.1), 

receptor configurations (Sect. 2.5), and atmospheric transport (Sect. 2.6). 

2.2 OCO-2 retrieval XCO2 and data pre-processing 

The OCO-2 algorithm of retrieving XCO2 from radiances employs an optimal estimation approach (Rodgers, 2000) involving a 

forward model, an inverse model, and prior information regarding the vertical CO2 profiles (O’Dell et al., 2012). We used the bias-10 

corrected XCO2 values from OCO-2 Lite files (version 7R; OCO-2 Science Team/Michael Gunson, Annmarie Eldering, 2015). 

Measurements over Riyadh were all carried out in land Nadir mode. We then selected 5 OCO-2 overpasses during the time period 

of Sept 2014–Dec 2016, based on four stringent criteria (see Appendix A). For smoothing noisy observations, we binned up the 

observed XCO2 with QF=0 according to the lat/lon of model receptors (served as the midpoints of each bin) and calculated the 

mean and standard deviation of screened measurements within each bin. Next, background values were defined (Sect. 2.4) and 15 

subtracted from the bin-averaged observed XCO2 to estimate increase in observed XCO2 (step 3 in Fig. 1). The impacts of different 

bin-widths on bin-averaged observed signals are shown in Appendix D1. Total observed errors comprise the spatial variation of 

observed XCO2 in each bin, background uncertainties, and retrieval errors obtained from the Lite file. 

2.3 Sources of information for CO2 fluxes 

2.3.1 Fossil fuel emission (ODIAC) and prior emission uncertainties 20 

We used the latest (year 2017) version of the Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC2017 dataset, Oda 

et al., 2018; Oda and Maksyutov, 2011, 2015) with fossil fuel CO2 emissions at 1×1 km resolution on the monthly scale (Fig. 4). 

ODIAC starts with annual national emission estimates by fuel types from the Carbon Dioxide Information Analysis Center (CDIAC, 

Andres et al., 2011), which are then re-categorized into specific ODIAC emission categories on monthly basis, i.e., point source, 

non-point source, cement production, international aviation and marine bunker (Oda et al., 2018). Because CDIAC only covers 25 

years up to 2013, ODIAC extrapolates emissions in 2013 for emissions in 2014 and 2015 based on BP global fuel statistical data 

(BP, 2017). Also, ODIAC estimates point sources emissions according to a global power plants database—the Carbon Monitoring 

and Action (CARMA) Database (Wheeler and Ummel, 2008), and collects and distributes non-point sources using an advanced 

nighttime lights dataset from the Defense Meteorological Satellite Program Operational Line Scanner (DMSP/OLS). The use of 

the nightlight dataset allows ODIAC to characterize the spatial patterns of the anthropogenic sources such as point sources, line 30 

sources and diffused sources. More details about ODIAC2017 are in Oda et al. (2018). 

To estimate emission uncertainties around Riyadh, we followed a method similar to those reported in Oda et al. (2015) and 

Fischer et al. (2017). Three emission inventories derived from different methods are inter-compared: ODIAC, the Fossil Fuel Data 

Assimilation System (FFDASv2; Asefi-Najafabad et al., 2014; Rayner et al., 2010) and the Emission Database for Global 

Atmospheric Research (EDGARv4.2; http://edgar.jrc.ec.europa.eu; Janssens-Maenhout et al., 2017). Slightly different from the 35 

uncertainty estimation method proposed in Oda et al. (2015), the fractional uncertainty is solely characterized by the emission 
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spread (1-𝜎𝜎, among three inventories) and mean values (𝜇𝜇) of estimated emissions for each grid cell within a given region (10° N–

40° N, 25° E–60° E; Fig. 5). Due to different spatial grid spacing among inventories, we aggregated ODIAC emissions from 1 km 

to 0.1° grid cell to match the resolution of EDGAR and FFDAS and used the emission spread as a proxy for the spatial emission 

uncertainty. Because the proxy data do not change often in many emission inventories, emissions for the year 2008 (when all three 

inventories were readily available) were used for uncertainty calculations. Ultimately, fractional emission uncertainties and ODIAC 5 

emissions are convolved with X-STILT’s weighted column footprints to provide the XCO2 uncertainties due to prior emission 

uncertainties. Results of XCO2 uncertainties due to emissions are shown in Sect. 3.4.2 and Sect. 3.5.2.  

2.3.2 Natural fluxes (CarbonTracker) 

Although FFCO2 emissions are our focus, other potential confounding factors, e.g., the oceanic and terrestrial biospheric fluxes, 

affecting atmospheric CO2 are also accounted for. Both fluxes are derived from a 3-hourly 1°×1° product—the CarbonTracker-10 

NearRealTime (CT-NRTv2016 and v2017, http://carbontracker.noaa.gov). CT-NRT, an extension of the standard CarbonTracker 

(Peters et al., 2007) is designed for the OCO-2 program and uses different prior flux models and “real-time” ERA-Interim reanalysis 

in its transport model than regular CT, which allows for more timely model results. To calculate oceanic and biospheric XCO2 

changes, we multiplied these natural fluxes with column weighted footprint according to Eq. (3). Although wildfire emissions can 

greatly modify atmospheric XCO2 (Heymann et al., 2017), we expected relatively small XCO2 contributions from wildfire and 15 

hence excluded wildfire-elevated XCO2 estimations, considering the times (mostly wintertime overpasses) and study region (the 

Middle East) in this study.   

2.4 Background XCO2 

Determination of background XCO2 is crucial, as it can significantly affect the magnitude of inferred observed anthropogenic 

signals. If the background is underestimated, then the detected signal may be overestimated, and vice versa. In this study, we seek 20 

to develop best-estimated background values given five tracks, where 3 methods are proposed and investigated as follows,  

M1. A “trajectory-endpoint” method by assigning CO2 values extracted from global models (i.e., CT-NRT) to trajectory 

endpoints plus simulated biospheric, oceanic components (Sect. 2.4.1);  

M2. Statistical methods estimated solely from XCO2 observations based on two previous studies (Sect. 2.4.2);  

M3. An “overpass-specific” background requires model-defined urban plume and measurements outside the plume (Sect. 2.4.3).  25 

We devote considerable efforts to compare the aforementioned three ways (Sect. 3.3) and investigate the background impact on 

model-data comparisons and emission estimates (Sect. 4.2). We choose M3-based background for this study as it is designed 

specifically for examining a particular city and specific overpasses downwind of the city.  

2.4.1 Trajectory-endpoint method (M1) 

Since the background is the portion of the atmosphere that is not “contaminated” by urban emissions, modeled background XCO2 30 

comprises modeled boundary condition confined by four-dimensional CO2 fields from CT-NRT and contributions from biospheric 

fluxes, oceanic fluxes, and OCO-2 prior profiles (M1 in Fig. 1). Specific for modeling CO2 boundary condition, CO2 values for 

upper levels above MAXAGL are estimated based on CO2 from their adjacent CT levels. And, averaged CT CO2 values at trajectory 

endpoints are used for boundary conditions at model release levels (Fig. 2c). Then, modeled boundary conditions at vertical levels 
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are weighted accordingly via OCO-2’s averaging kernel. Model-derived background values depend on the duration of hours 

backward (nhrs, increasing in the backward direction) in the model and are expected to stabilize as nhrs increases.  

However, potential uncertainties in transport may strongly influence the distribution of Lagrangian parcels as backward 

duration time nhrs increases and may lead to potential spatial mismatch of the background region. Furthermore, potential biases 

and relatively coarse resolution of 2°× 3° for the global CarbonTracker may add inaccuracies to CO2 values at trajectory-endpoints.  5 

2.4.2 Statistic method (M2) 

Hakkarainen et al. (2016) (referred to as M2H) extracted XCO2 anomalies over the Middle East based on the daily median of 

screened measured XCO2 with QF=0 and WL<15 within a relatively broad region (0° N–60° N, 15° W–60° E). Their detected 

anthropogenic signals vary from 1–2 ppm over 0.5° × 0.5° gridcells near Riyadh. Silva and Arellano (2017) (referred to as M2S) 

used measurements within a 4°×4° combustion region centered around the “urban and dense settlements” inferred from an 10 

anthropogenic biomes dataset (“anthromes”, Ellis and Ramankutty, 2008). Then, M2S derived background as the mean minus one 

standard deviation of available observations within their studied urban extents.  

Both statistical methods are highly efficient in estimating background values but can be limited to certain applications. For 

instance, M2H may be less suitable for determining background values when zooming into specific cities. Measurements within a 

broad spatial domain are lumped together, regardless of their locations (whether over rural or urban areas) and atmospheric 15 

transport. Silva and Arellano (2017) have pointed out that their examined 4°×4° combustion region may be too coarse for studying 

urban emissions and is suitable for studying the “bulk” characteristics. Also, M2S may be less applicable when multiple observed 

peaks are tangled together caused by emitters near the target city/megacity (e.g., clusters of cities in China). Therefore, without 

incorporating much atmospheric transport information, accuracies in the transport from an urban center to the downwind satellite 

overpass cannot be guaranteed. It may be difficult for either statistical method to locate the exact XCO2 peak elevated by target 20 

city or background region. These difficulties motivate us to introduce a third approach in the next subsection.  

2.4.3 Overpass-specific background (M3) 

A few other studies defined the background values as the averaged observed XCO2 values over a “clean” upwind region that is 

“uncontaminated” by urban emissions. For instance, Kort et al. (2012) and Schneising et al. (2013) defined the “clean” region 

based on geographic information (e.g., rural area to the north of LA basin). Although OCO-2 has relatively narrow swaths, transport 25 

models can be used to differentiate the enhanced versus background portions along the overpass. For example, Janardanan et al. 

(2016) calculated background XCO2 as the averaged observed XCO2 among gridcells with modeled anthropogenic signals < 0.1 

ppm. This 0.1 ppm threshold is determined from the average simulated fossil fuel abundance over desert areas worldwide using 

the FLEXible PARTicle dispersion model (FLEXPART; Stohl et al., 2005), a model that is similar to STILT in that both are time-

reversed LPDMs.  30 

We present an alternative method using a forward-time run from an urban box to reveal the urban influence on satellite 

soundings, which are more straightforwardly and efficiently than solely relaying on backward-time runs. Fictitious particles are 

released from a box around the city center as a feature implemented with STILT (T. Nehrkorn, personal communication) to track 

air parcels over a city and the transport of the urban plume (Fig. 1). Specifically, the model continuously releases air parcels over 

a 30-minute window from a box surrounding Riyadh (extending ± 0.2° from the city center), with multiple 30-minute releases of 35 

1000-particle ensembles over the 10-hours ahead of the satellite overpass hour (00–10UTC). Then, an urban plume can be derived 

from the parcels’ distribution during the ~3 minutes OCO-2 passing window (Fig. 6a). Note that air parcels are tracked forward in 
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time for 12 hours, allowing for equal contributions from parcels released initially from different time intervals (every 30 mins) 

onto defined urban plume. We are aware of potential model error and its adverse impact on defined urban plume. Therefore, we 

further accounted for this influence, where wind error components are added in the forward run, resulting in additional spread in 

the air parcels (Sect. 2.6). In addition to random errors, systematic wind errors may affect the model’s capability in simulating the 

urban plume. Yet, we did not see large biases for Riyadh and no large latitude shifts in the modeled and observed urban 5 

enhancements for most examined events. See Sect. 2.6 for more discussions.  

Next, two-dimensional kernel density estimation (Venables and Ripley, 2002) is applied to determine the boundary of city 

plume based on the air parcels’ distributions. We normalized the two-dimensional kernel density by its maximum value and “sketch” 

the boundary of the city plume based on a threshold of 0.05, which is sufficient to include most air parcels. No dramatic change in 

the shape/size of resultant urban plume was found when testing other thresholds < 0.05. The urban-influenced latitude range is 10 

defined as the intersection of the urban plume and OCO-2 overpass (Fig. 6a). Overall, the urban-influenced latitudinal band 

represented by 5 % of the maximum kernel density covers from 23.5° N–26° N, given multiple overpasses for Riyadh (Fig. A2).  

The background latitudinal range unaffected by Riyadh’s urban plume for estimating background then extend ~100 km from 

the north-most and/or south-most of derived urban plume (Fig. 6b). We abandon observations with latitudes > 26° N and < 23° N, 

because those retrievals are too scattered (Fig. 6b) and indicate a second peak during few other events (not for event on 12/29/2014). 15 

Eventually, the mean and spatial variation (i.e., the standard deviation) of screened observations (QF=0) over background ranges 

serve as best-estimated background value and background uncertainty, respectively (Fig. 6b). If the near-field wind vectors point 

more towards the north, screened measurements over the southern background latitudinal range is utilized, vice versa. Over 80 

soundings are used to estimate final background for each examined overpass.  

2.5 Sensitivity analyses for X-STILT column receptors 20 

The goal of carrying out sensitivity tests is to understand any systematic/random errors towards STILT simulations brought by 

receptor configurations. Under the premise of limited computational resources, proper column receptors are set up with allowable 

random errors. Specifically, we focused on 3 receptor/ensemble settings, i.e., the maximum release level (MAXAGL), the vertical 

spacing of release levels (dh), and the particle number per level (dpar). The combination of these parameters yields the total number 

of particles (NUMPAR) released from column receptors.  25 

Instead of regenerating model trajectories (Jeong et al., 2013; Mallia et al., 2015), we adopted the bootstrap method to resample 

model ensembles. The bootstrap approach helps construct hypothesis tests and infer error statistics (Efron and Tibshirani, 1986). 

The initial sample size before the bootstrap should be sufficiently large to ensure the performance of this method and related 

statistics. Thus, we generated a “base run” of trajectories starting initially from 401 levels (from the surface to 10 km) with a 

vertical spacing of 25 m and 200 particles per level. For testing each parameter (MAXAGL/dh/dpar), we fixed the other two 30 

variables and randomly selected/resampled model particles for 100 times (allowing for repetitions). In other words, we obtained 

100 new sets of trajectories along with 100 derived anthropogenic enhancements for each test. Basic statistics, i.e., mean values 

and standard deviations, describing the distribution of these anthropogenic enhancements, are used to infer systematic and random 

uncertainties, respectively (results in Sect. 3.1).   

2.6 X-STILT column transport errors 35 

Uncertainty in atmospheric transport modeling has been identified to significantly affect emission constraints (Cui et al., 2017; 

Gerbig et al., 2008; Lauvaux et al., 2016; Stephens et al., 2007). However, transport errors due to vertical wind profiles and PBL 
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height uncertainties are expected to be less sensitive for column-integrated measurements than in situ measurements (Lauvaux and 

Davis, 2014; Law et al., 1996). In this study, we only accounted for errors caused by deviations in horizontal wind fields.  

Previous studies (Lin and Gerbig, 2005; Mallia et al., 2017) aimed at estimating transport error at one fixed level, whereas for 

XCO2 we account for transport error in a column sense (i.e., column transport error). Macatangay et al. (2008) briefly explained 

the column transport error as the weighting of transport error variances with respect to pressures. Similarly, we treated each model 5 

level separately and calculated one CO2 transport error per level, denoted as 𝜎𝜎𝜀𝜀2 (𝐶𝐶𝐶𝐶2.𝑠𝑠𝑝𝑝𝑠𝑠.𝑎𝑎𝑎𝑎.𝑛𝑛), following Lin and Gerbig (2005). 

In short, an additional wind error component (𝒖𝒖𝜺𝜺) is added to the mean wind (u�) and turbulent wind component (𝒖𝒖′) that are 

embedded in normal STILT runs (Lin et al., 2003), to randomly perturb air parcels for each level. RMS errors of u- and v-

component modeled wind, error correlation timescales and length scales describe the 𝒖𝒖𝜺𝜺 in space and time (more in Appendix B).  

In addition to the random error component, we are aware of potential systematic wind errors in certain areas, e.g., positive 10 

wind speed bias reported over Los Angeles (Ye et al., 2017), and their impacts on both forward- and backward- time simulations. 

Specifically, wind biases can influence the accurate definition of urban plume (Sect. 2.4.3) or the model-data comparisons (leading 

to model-data discrepancies in XCO2 shapes, Sect. 3.4.1). As an attempt to resolve these obstacles, X-STILT can incorporate a 

near-field wind bias correction (to both backward- and forward-time simulations). By rotating/shifting model trajectories (Fig. A4), 

this bias correction aims at “correcting” air parcel distributions and resultant footprints, given knowledge of the near-field wind 15 

biases can be properly interpolated. Unfortunately, only 2 radiosonde stations around Riyadh with only 3 vertical pressure levels 

within the PBL (and sometimes with missing data) may be insufficient to correctly interpolate the vertical wind biases. Cities with 

meteorological profiles sampling more levels within the PBL and higher temporal frequency in reporting observed vertical winds 

will be more suitable sites retrieve the near-field wind errors. Other methods include rotation and stretching of urban plumes 

derived from WRF-Chem (Ye et al., 2017), similar to the rotation of X-STILT air parcels, to quantify errors in wind directions and 20 

speeds. Deng et al. (2017) sought correction of wind biases in a sophisticated manner via data assimilation. Yet, the near-field 

correction within X-STILT can be potentially utilized in the future as a quick bias correction to the near-field wind in LPDMs, 

given more wind observations and relatively flat terrains. Therefore, we decided to 1) ignore the impact of wind bias on forward-

trajectories defined urban plume due to minimal biases reported over Riyadh whose magnitudes fall well within the prescribed 

error components (Fig. A1; Ye et al., 2017), and 2) get around with the impact on model-data comparisons using a latitudinal 25 

integration (further in Sect. 3.5). 

For each model level (n), we obtained two sets of parcel distributions—i.e., one without and one with the wind error component 

(𝒖𝒖𝜺𝜺). Then, the difference in the spread of these two distributions, or mathematically the difference in the variances of derived CO2 

distributions among air parcels (Lin and Gerbig, 2005), serve as the XCO2 uncertainty (in ppm) due to transport error. We tested 

describing this XCO2 transport uncertainty based on either normal or log-normal statistics. Since transport error using log-normal 30 

statistics did not show very distinct improvement from that using normal statistics, we ended up adopting normal statistics for the 

consideration of benefiting inverse modeling. Because the parcel distribution with 𝒖𝒖𝜺𝜺 is more dispersed than the parcel distribution 

without 𝒖𝒖𝜺𝜺 (Fig. 7), the increase in CO2 variance with 𝒖𝒖𝜺𝜺 from that without 𝒖𝒖𝜺𝜺 describes the transport error for each level. However, 

negative values of transport error can occasionally occur, due to statistical sampling from insufficient model parcel trajectories. To 

resolve this technical issue, we modified Lin and Gerbig (2005) by using a regression-based approach. A weighted linear regression 35 

slope is used to describe the increase in CO2 variances and then estimate transport error. More descriptions about this regression-

based method are demonstrated in Appendix B. Overall, transport errors at levels within the PBL are expected to be larger than 

those at higher levels that approach zero.  
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Lastly, we weighted the vertical profiles of transport errors against OCO-2’s weighting functions. Following the definition of 

modeled AK-weighted XCO2 in Eq. (1), the weighted column transport error follows Eq. (5), 

𝜎𝜎𝜀𝜀2(𝑋𝑋𝐶𝐶𝐶𝐶2.𝑠𝑠𝑝𝑝𝑠𝑠.𝑎𝑎𝑎𝑎) =  � {𝑤𝑤𝑛𝑛2 × 𝜎𝜎𝜀𝜀2 (𝐶𝐶𝐶𝐶2.𝑠𝑠𝑝𝑝𝑠𝑠.𝑎𝑎𝑎𝑎.𝑛𝑛)}
𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑛𝑛

𝑛𝑛=1

+  2 � {𝑤𝑤𝑛𝑛 × 𝑤𝑤𝑠𝑠 × 𝑐𝑐𝑐𝑐𝑐𝑐𝜀𝜀(𝐶𝐶𝐶𝐶2.𝑠𝑠𝑝𝑝𝑠𝑠.𝑎𝑎𝑎𝑎.𝑛𝑛 ,𝐶𝐶𝐶𝐶2.𝑠𝑠𝑝𝑝𝑠𝑠.𝑎𝑎𝑎𝑎.𝑠𝑠)},
1 ≤ 𝑛𝑛<𝑠𝑠 ≤ 𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑛𝑛

 

                      (5) 

where 𝑤𝑤𝑛𝑛 denotes the product of AKnorm and PW at level n; and 𝑐𝑐𝑐𝑐𝑐𝑐𝜀𝜀  represents the correlation of transport errors between every 5 

two levels n and m (1 ≤  𝑛𝑛 < 𝑚𝑚 ≤  𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛). To calculate a typical vertical error correlation length scale, we fit exponential 

variogram according to transport errors and their separation distances between levels. Results of transport error at each sounding 

and its latitudinal integration for each track are shown in Sect. 3.4.2 and Sect. 3.5.2.  

3 Results  

3.1 X-STILT sensitivity tests with column receptors 10 

The sensitivity tests examined uncertainties in modeled anthropogenic enhancements influenced by different maximum release 

heights (MAXAGL), particle numbers per level (dpar), and vertical spacings between levels (dh). Figure 8 shows test results given 

a wintertime sounding on 12/29/2014 around Riyadh.  

Anthropogenic enhancements increase as maximum model levels increase from 1–2 km and then approach to equilibrium (Fig. 

8a). When MAXAGL is very small (< 2.5 km), the model fails to fully capture the CO2 enhancements within the PBL and causes 15 

underestimations on the elevated XCO2. Random errors reflect the stochastic nature of air parcels within X-STILT that results in 

small fluctuations in parcel distributions and resultant signals. Random uncertainties of XCO2 signals given different MAXAGLs 

stay relatively the same. In this experiment, dpar and dh are fixed to 100 particles and 100 meters.  

For testing particle number per level (dpar), MAXAGL is set to 6 km (well above the top of the PBL, see Appendix C for the 

choice of 6 km) and 8 different sizes of dpar comprise the simulated atmospheric column: 25, 50, 75, 100, 125, 150, 175 and 200 20 

particles. No obvious bias is associated with mean XCO2 enhancements. The decay rate of random error approximates to the square 

root of the growth rate of particle numbers (e.g., �50/252 , Fig. 8b). We ended up placing 100 particles for each level, as random 

errors do not change dramatically from 100 to 200 particles.  

Additionally, we conducted two experiments using constant and uneven vertical spacings. Vertical spacing in the constant dh 

experiment ranges from 50 m to 1 km. Mean anthropogenic XCO2 enhancements decrease as vertical spacing increases (Fig. 8c), 25 

likely because fewer release levels are insufficient to represent air parcels in a column and their interactions with surface emissions, 

especially under strong wind shear. Two additional cases with uneven vertical spacing below and above a “cutoff level” of 3 km 

(see Appendix C for the choice of 3 km) are performed: 1) different lower spacings with a fixed upper spacing of 500 m; 2) different 

upper spacings with a fixed lower spacing of 150 m. For example, for case 2) where upper spacings vary, their resultant means and 

spreads of anthropogenic enhancements are similar to those using a constant spacing of 150m (Fig. 8c). This result suggests that 30 

the lower spacing below the cutoff level matters mostly to model results, because most anthropogenic XCO2 enhancements are 

confined within the PBL. Thus, column receptors are placed from 0–3 km with a spacing of 100m and from 3–6 km with a spacing 

of 500 m (Fig. 3e).  

Above 3 model parameters are closely related and can be combined as the total particle number. Fractional uncertainty in 

modeled enhancement reduces as total particle number increases and is about 5 % given large amounts of particles > 12500 (Fig. 35 
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8d). Our choice of column receptors and particle numbers has no noticeable bias and a fractional uncertainty of about 8 %. Overall 

changes in X-STILT column receptors have a relatively small impact on modeled anthropogenic signals, which is consistent with 

the finding (for biospheric signals) in Reuter et al. (2014).  

3.2 X-STILT column footprints and upwind emission contributions 

Upstream source regions and their contributions to downwind air column can be identified as the “footprint” using backward-time 5 

simulations. Here we take one sounding/example at 24.4961° N on 12/29/2014, when southwestern winds dominated, to explain 

the differences in parcel distributions and footprint patterns derived from 500 m, 3 km, and multiple levels. Air parcels released at 

500 m are associated with large footprints in the adjacent area of Riyadh (Fig. 3a-b). While parcels released from a higher level of 

3 km travel much faster, where most parcels barely get entrained into the PBL (Fig. 3c), which yields very few contacts with the 

surface implied from small footprint values (Fig. 3d). When air parcels are released from multiple levels (Fig. 3e), the footprint 10 

derived from each level within PBL is weighted by pressure weighting function, which results in overall smaller footprint (Fig. 3f) 

than that derived from 500 m. Yet, column footprint covers a broader spatial domain than the footprint derived from any fixed 

level. The intention here is to illustrate the difference in upwind influences from a PBL-based tower-like measurement versus a 

column-integrated measurement (e.g., satellite). As expected, surface influence arriving at an air column can be one or few orders 

of magnitude smaller than that arriving at a given location. Consequently, CO2 changes within the PBL are expected to be larger 15 

than column changes. If zooming into the near-field land surface, westerly winds dominated during the 12/29/2014 event. XCO2 

contribution maps indicate large contributions due to urban emissions of Riyadh (Fig. 9b-c, 9e-f) and small contributions from 

regions to the south of Riyadh (Fig. 9a, 9d), regardless adopted meteorological fields.  

3.3 Comparisons between methods to calculate background XCO2 

We now compare the magnitudes and temporal variations of background values under 4 definitions (introduced in Sect. 2.4.1 to 20 

Sect.2.4.3), which are a trajectory-endpoint definition (M1), statistical definitions proposed as in Silva and Arellano (2017) and 

Hakkarainen et al. (2016) (M2S and M2H); and an overpass-specific definition using X-STILT and OCO-2 measurements over 

background region (M3). As Silva and Arellano (2017) have pointed out their 4°×4° urban extent may be too coarse for studying 

urban emissions and is suitable for studying the “bulk” characteristics, we only borrowed their statistical assumption (𝜇𝜇-𝜎𝜎). We 

used the same examined latitudinal range (see Sect. 3.5) as M3, for computing M2S-based background.  25 

M2S and M3 calculate background values from observations at the local scales, whereas M1 and M2H derive background 

values based on modeled or observed XCO2 over broad spatial domains. Thus, the temporal variation of background XCO2 using 

M2S agree better with that using M3 (Fig. 8e). M2S- and M3-based background often converge with a difference of < 0.5 ppm for 

examined events. Background using M1 differs significantly from background values using other approaches and exhibits positive 

biases spanning from 0.5–1.5 ppm (Fig. 8e). Possible reasons of this discrepancy may be the accumulated transport uncertainties 30 

as backward duration increases and potential uncertainties in input concentration fields with relatively coarse resolutions. 

Some limitations of M1, M2H and M2S have been discussed in previous sections (Sect. 2.4.1 and 2.4.2). Here we emphasis 

the advantages and limitations of our final choice—M3 method. Comparing against methods based solely on models or simple 

statistics, M3 incorporates both and accounts for near-field transport from the target city to downwind satellite soundings. The 

background values are calculated based on screened measurements away from the urban plume, which represent more of the 35 

localized background and are specific to each overpass. Meanwhile, as wind errors may introduce errors/biases in defined urban 

plume, we added a wind error component to broaden the urban plume (Sect. 2.4.3 and Sect. 2.6) that helps reduce the inclusion of 
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enhanced values in the background region. Therefore, M3 is designed for identifying the urban plume found within each track and 

defining an overpass-specific background.  

On average, background derived from simple statistics (e.g., regional daily median from M2H) may be “biased” low by 0.56 

ppm, comparing against the localized “overpass-specific” background using M3. While a bias of 0.56 ppm in the background 

XCO2 may seem small, this relatively small discrepancy in background values, on average, can lead to larger differences in 5 

estimated observed urban signals and emission evaluations (Sect. 4.2).  

3.4 Anthropogenic enhancements and associated uncertainties 

The application of X-STILT to OCO-2 yields the observed anthropogenic enhancements above background values as well as the 

modeled enhancements based on weighted column footprint and ODIAC emissions (Fig. 1). Observed uncertainties include natural 

variations of observations in each bin, background uncertainties, and retrieval errors; simulated uncertainties comprise XCO2 10 

uncertainties due to column model configurations, atmospheric transport, and prior emissions.  

3.4.1 Comparisons against OCO-2 XCO2 at selected soundings 

We compare both the magnitude and shape of modeled and observed anthropogenic enhancements along the track. Models using 

GDAS and WRF report relatively higher and lower XCO2 compared against bin-averaged observations, respectively, for the 

12/29/2014 overpass (Fig. 10). The model-to-model discrepancy between GDAS versus WRF can be attributed to their estimated 15 

surface influences. Specifically, parcels driven by GDAS are less dispersed along the meridional direction (Fig. 9b) than parcels 

driven by WRF (Fig. 9e), which yields relatively stronger surface influence from GDAS. As the satellite overpassed Riyadh, 

influences from the city attenuate and both observed and modeled XCO2 approach to the background. In terms of the spatial XCO2 

shape, large enhancements > 1.5 ppm inferred from bin-averaged observations cover a wide range from 24.5° N–24.8° N; whereas 

model-derived enhancements are narrower (Fig. 10). Also, modeled versus observed enhancements exhibit a 0.1° latitudinal shift.  20 

These small discrepancies in the enhancement widths and locations of XCO2 peaks between observation and models can also 

be found in other events. Similarly, for events on 12/27/2014, 12/16/2015 and 01/15/2016, observed enhancements are more 

continuous and moderate; whereas GDAS-modeled enhancements are narrower and sharper (similar to the 12/29/2014 case, Fig. 

9). Maximum modeled enhancements can reach > 5 ppm for few soundings on 12/16/2015 and 01/15/2016. On the contrary, 

weaker modeled enhancements with wider coverage along latitudes (as opposed to the 12/29/2014 event) are reported during the 25 

last event. Latitudinal shifts of XCO2 peaks vary from 0.1°–0.4° among total 5 events.  

Based on these findings, we suspect that mismatch in the model-data enhancement widths is primarily due to errors in wind 

speeds; while latitudinal mismatch in model-data XCO2 peaks results from errors in the wind directions near the site. Simulations 

with strong near-field influences can be sensible to potential biases in wind speeds and directions. This challenge leads us to 

introduce a method that integrates the urban XCO2 enhancements over a latitudinal band (Sect. 3.5) to reduce near-field sensitivity 30 

on model-data comparisons and emission evaluations.  

3.4.2 Transport errors, prior emission uncertainties and observed uncertainties 

Time-dependent transport uncertainties of XCO2 depend partially on interpolated regional wind error statistics as well as the 

inhomogeneous distribution of urban emissions. RMS errors associated with the GDAS u- and v-component winds are mainly less 

than 2 m s-1 (Fig. A1) over relatively flat terrain around Riyadh, which is much smaller than values from previous studies over 35 

relatively more complex terrains (Henderson et al., 2015; Lin et al., 2017). Even though biases in GDAS u- and v-component 
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winds for each track can be positive or negative, overall biases in u- and v-component winds are relatively small, with absolute 

values close to zero, given a dozen tracks. That is, no obvious systematic error over times/tracks is found in GDAS wind field 

around Riyadh. Similarly, Ye et al. (2017) reported no bias in the transport for Riyadh using WRF-Chem.  

Because of the spatial inhomogeneity in urban emissions, wider parcel distributions after randomization may have higher 

possibility in making contact with more emission sources than parcel distributions before perturbation. Take the overpass on 5 

12/29/2014 as an example. Small transport errors can often be found over less polluted latitudinal range (< 24.3° N and > 24.9° N 

in Fig. 10). Then, transport errors start to increase as few randomized parcels tend to “hit” some emission sources, although mean 

enhancements are small, e.g., 24° N–24.5° N and 24.7° N–24.8° N in Fig. 10. Although air parcels at higher altitudes are also under 

perturbations, the change in parcel distribution may have very small impact on column transport errors due to little contact of 

parcels aloft with surface emissions. As a result, the transport error per sounding for the 12/29/2014 overpass ranges from 0.07–10 

2.87 ppm (Fig. 10). Within the enhanced latitudinal band (Fig. 6b), the median of transport errors is 0.56 ppm. For the other tracks 

with more intense urban enhancements, maximum transport error per sounding can reach > 5 ppm and median of transport errors 

over polluted latitudinal band vary from 0.60–1.50 ppm among tracks.  

Around Riyadh, fractional uncertainties in gridded emissions mostly range from ~60–130 % (Fig. 5). While gridcells with 

large fractional uncertainties >150 % can be found especially over North Africa, most of these gridcells possess very small 15 

estimated emissions. Our spatial fractional uncertainties in gridded emissions over the Middle East can be comparable to few 

studies focusing on the gridded emission uncertainties even over different regions. For instance, in the northeastern U.S., several 

commonly-used inventories differ by > 100 % over half of examined 0.1° gridcells (Gately and Hutyra, 2017). As a result, gridded 

emissions uncertainties around Riyadh (Fig. 5) contribute to XCO2 uncertainties of 0.04–2.40 ppm per sounding for the 12/29/2014 

overpass. The median of emission errors for soundings within the enhanced latitudinal band is about 0.66–1.41 ppm for all 5 events.  20 

Retrieval errors are reported for each retrieved sounding according to OCO-2 Lite file and exhibit a Gaussian-like distribution 

with most frequent values of 0.45–0.5 ppm among 5 overpasses. These retrieval error variances are then averaged within each 

observed bin to obtain bin-averaged retrieval errors. Background uncertainty varies from 0.65 to 0.84 ppm, depending on how 

scattering the observations are over background latitudinal range in each case. A third observed error source depicts the natural 

variation of noisy observations in each averaged bin. Overall observed uncertainty associated with each sounding varies from 0.8–25 

1.27 ppm. Worden et al. (2017) accounted for the natural variability in observed XCO2, the measurement noise errors with error 

covariance within spatial domain of 100 km×10.5 km. They found the overall precision of a measurement (WL< 10) over the land 

is ~0.75 ppm. Our larger observed uncertainties per sounding may be attributed to no filter of observations using WL, different 

examined regions and time periods and inclusion of background uncertainty (for the purpose of inverse analysis).  

On a per sounding basis, XCO2 uncertainties due to atmospheric transport are comparable to or slightly higher than those 30 

caused by emission uncertainties. Both uncertainties are higher than observed uncertainties within the urban-enhanced region. Still, 

reductions in uncertainties are expected as sounding-level uncertainties are aggregated along the track (Sect. 3.5.2). 

3.5 Latitudinally-integrated anthropogenic signals and uncertainties 

Because shapes and locations for XCO2 peaks between models and observations did not line up perfectly (Sect. 3.4.1), direct 

comparison of observed versus simulated anthropogenic enhancements at each sounding may lead to significant deviations within 35 

small latitudinal bins. Instead, we compared anthropogenic signals integrated over their corresponding latitudes for each overpass.  
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Firstly, we integrated bin-averaged observed or modeled anthropogenic enhancements (i.e., differences between total XCO2 

and overpass-specific background) along their latitudes. While multiple degrees of freedom are sacrificed by this integration, this 

calculation gains a larger benefit of potentially reducing the impact of near-field wind bias on emission evaluations, as long as the 

latitude band for aggregation is representative. Secondly, a representative latitudinal range for integration (e.g., ~24° N–25.2° N in 

Fig. 10) can neither be too wide to include a second XCO2 enhancements due to emissions from nearby emitters other than 5 

emissions from the target city; nor be too narrow to exclude observed or modeled enhancements due to emissions of the target city. 

In addition, negative observed urban enhancements may occur when the bin-averaged total observed XCO2 is slightly lower than 

background value. The occurrence of these negative values is partially caused by the natural variations of observed XCO2 and 

background uncertainties, which have been included in the uncertainties related to observed signals (Sect. 3.4.2). To minimize the 

inclusion of those negative values, we start with the enhanced latitudinal range (e.g., 24.24° N–24.92° N in Fig. 6b) and further 10 

account for latitudinal mismatch in model-data XCO2 peaks (e.g., 0.1° in Fig. 10). To further include urban enhancements over the 

“tails” outside the distinct XCO2 peaks, we further extend previous latitudinal range by an assumed 20 % of its width on both sides. 

We tested percentages other than 20 % and found no large increase in estimated signals due to small enhancements outside the 

plume (Appendix D2). Changes in the angle between near-field wind direction and satellite overpass may fluctuate the width of 

enhanced latitudinal band as well as the final integration latitudinal ranges (i.e., 1.08°–2.27°). The mean latitudinal range for 15 

integration is about 1.56° (~173 km) over 5 tracks.  

For integrating uncertainties over one overpass, error variance-covariance matrices can be built. We took transport error as an 

example (Fig. A5a). Diagonal elements comprise transport error variance per sounding with off-diagonal elements filled with error 

covariance between each two soundings/receptors. A typical correlation length scale of transport errors along the overpass is about 

25 km by fitting exponential variograms (Fig. A5b), given the transport errors (further driven by plume structures) and our choice 20 

of grid spacing between examined receptors.  

3.5.1 Comparisons of latitudinally-integrated anthropogenic XCO2 signals 

Modeled anthropogenic XCO2 signals range from 0.83–2.32 ppm and observed signals vary from 1.01–2.16 ppm. Averaged over 

5 overpasses, X-STILT using GDAS yields a mean anthropogenic signal of about 1.59 ppm that is comparable to the signal of 1.57 

ppm detected by OCO-2. The magnitudes of latitudinally-integrated observed signals can be affected slightly by how observations 25 

are binned up or selected (Appendix D). The slope of the linear regression line for best-estimated model-data urban signals is over 

one. Specifically, aggregated modeled signals are slightly lower/higher than aggregated observed signals, especially for those 

small/large observed signals (Fig. 11). Although best-estimated model-data urban signals line up well with a close-to-unity 

correlation coefficient, the correlation coefficient is dampened by uncertainties in both observations and models. Thus, we 

performed Monte Carlo experiments for 5000 times to fit regression lines (Fig. 11) based on randomly sampled model-data XCO2 30 

signals given their best-estimations and uncertainties (assuming normal distributions). The median of correlation coefficients using 

overpass-specific background is 0.61 (Fig. 11a).  

3.5.2 Uncertainties associated with simulated and observed signals 

The random uncertainties due to the choices of column receptors/parcels are small. For the one sounding showed in Fig. 8d, our 

model setup is associated with ~9 % on the modeled anthropogenic signal. If assuming this fraction ensemble uncertainty does not 35 

change for other examined soundings and no correlation between soundings, latitudinally-integration of this error source is < 0.02 

ppm and contributes to an averaged 1 % of latitudinally-integrated modeled urban signal.  
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The latitudinally-integration of transport errors (𝜎𝜎) varies from 0.41–1.41 ppm for each track. The transport error variations 

can be attributed to a combined effect from several underlying factors: regional wind errors and correlation scales within the PBL, 

sounding-level transport error variance-covariance, the inhomogeneous distribution of anthropogenic emissions around a city and 

how air parcels interact with surface emissions. For the same soundings over Riyadh, our transport errors in ppm are comparable 

to those reported in Ye et al. (2017). Moreover, we aggregated these 5 sounding-level transport errors, assuming errors are 5 

independent, given the large separation time between the overpasses (one or several months for most cases). Therefore, the 68 % 

confidence limit (1𝜎𝜎) of transport error is 0.46 ppm, which is ~29 % of the averaged modeled signal (~1.59 ppm) over 5 events.  

Similar steps for integration are taken for understanding XCO2 uncertainties due to prior emissions (Sect. 2.3.1 and Sect. 3.4.2). 

As a result, the 68 % confidence limit of XCO2 uncertainties due to emissions is about 0.40 ppm, leading to ~25 % of the mean 

urban signal (~1.59 ppm) over 5 tracks. Modeled uncertainties due to aggregate effects of all three error sources contribute to about 10 

40.1 % of the mean urban signal, averaged over total 5 overpasses.  

Retrieval errors between OCO-2 soundings are found to be correlated in both space and time, with correlation coefficients (for 

land nadir) of 0.45 and 0.31 as a function of satellite footprint and time, respectively (Worden et al., 2017). Uncertainties of bin-

averaged observed XCO2 share similar source as the background uncertainties, both of which rely on spatial variation in noisy 

observations (in each bin or over background region). Different types of observed uncertainties are assumed to be uncorrelated. 15 

Because observations along with their uncertainties have been binned up and the satellite footprints for bin-averaged observed 

uncertainties are hard to track, we only account for the temporal correlation of retrieval errors between every two soundings. As a 

result, total observed uncertainty per track vary from 0.30–0.44 ppm and the 68 % confidence limit of observed error is about 0.14 

ppm, i.e., ~ 9 % of the mean observed signals (1.57 ppm) over total 5 overpasses.  

4 Discussions 20 

4.1 Model capabilities and performances 

In this study, we demonstrate the coupling of forward- and backward-time Lagrangian particle dispersion model simulations within 

a new modeling framework (“X-STILT”) and their applications in locating the urban plume, determining background XCO2, 

identifying upwind sources, and estimating enhanced XCO2 caused by sources/sinks (Fig. 1). Specifically, backward-time 

simulations over an atmospheric column connect upwind emission sources with downwind atmospheric columns and generate 25 

spatial maps of this connection with additional information from satellite retrieval profiles. Although forward-time simulations 

from an urban box are an alternative and optional portion of X-STILT, these simulations help gain information regarding the 

location and size of the time-varying urban plume (Fig. 6a) and locate downwind polluted range on a satellite overpass.  

Model sensitivity tests suggest two main implications on simulating anthropogenic XCO2 enhancements using LPDMs: 1) 

Receptor levels need to reach levels exceeding certain averaged PBL height to fully capture influences from surface emissions. 2) 30 

The model may capture a larger anthropogenic signal as number of levels increases. But, to minimize computational costs, one 

may try sparser and denser levels above and within a representative mean PBL height (the cutoff level) over upwind regions. Users 

can adopt their own setup of receptors in X-STILT according to combined results from sensitivity tests (Fig. 8d).  

Additionally, X-STILT offers alternative solutions in dealing with errors in the meteorological fields, including regional 

random wind error perturbations and potential near-site wind bias corrections on model trajectories. For several satellite overpasses 35 

over Riyadh, models using WRF and GDAS are capable of capturing XCO2 enhancements due to urban emissions, even though 

there remains small mismatch in the locations of model-data XCO2 peaks. Model-to-model discrepancy between GDAS and WRF 
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in latitudinally-integrated urban signals is not large, benefiting from relatively flat terrain and similar interpolated terrain heights 

around Riyadh. No noticeable difference in overall wind error statistics (e.g., RMSE) derived from radiosonde comparisons with 

WRF versus GDAS is reported in this case. Thus, global meteorological fields such as 0.5° GDAS can be used for studying “flat 

cities” like Riyadh.  

When dealing with enhancements in column concentration with small signal-to-noise ratio, careful examination to modeled 5 

background XCO2 should be taken care of. X-STILT isolates the urban plume, and additional information from transport errors 

(with potential near-field wind bias correction) implemented in X-STILT accounts for uncertainty in model-defined urban plume 

and background latitudinal range not impacted by emissions of target city. Although one can possibly “eyeball” the city plume 

from observed XCO2 (especially when a signal XCO2 peak is visually distinctive), forward-time simulations with additional 

accounts for transport errors implemented in X-STILT may provide a more objective and efficient way (in that valuable human 10 

time is unnecessary) in figuring out the potential downwind sections along track that are affected by the city plume and 

extrapolating background region and its value. These advantages of overpass-specific background will become more important as 

more satellite tracks are incorporated within the analyses and future flux inversions.  

4.2 Implications on error analysis and future inversion using LPDMs 

Column transport uncertainties have not been rigorously examined in most XCO2 studies employing Lagrangian particle dispersion 15 

models like STILT. In this study, we conducted comprehensive analysis towards, 1) observed errors including spatial XCO2 

variability, background and retrieval uncertainties; 2) simulated errors comprise uncertainties caused by model configurations, 

atmospheric transport and prior emissions. With the help of OCO-2, X-STILT is able to provide both the time- or latitude-

dependent uncertainties (Sect. 3.4.2) and latitudinally-integrated uncertainties for each satellite overpass (Sect. 3.5.2).  

On average, column transport uncertainties (with 68 % confidence limit) contribute to 29.1 % of the mean modeled urban 20 

signal over 5 overpasses. Still, transport error on a per track basis can be substantial with fractional transport uncertainties < 65 % 

for the first four overpasses but > 80 % for the last overpass. We accounted for transport error correlations between X-STILT 

release levels and sounding locations when calculating overall transport uncertainty on the per sounding and per track basis. For 

instance, transport error covariance between selected soundings contributes to about 70 % of the integrated transport errors, 

emphasizing the importance of error covariance on model evaluations (e.g., Lin and Gerbig, 2005). 25 

To further demonstrate X-STILT’s role in inverse modeling, we conducted a simple scaling factor inversion (Rodgers, 2000), 

based on 5 pairs of model-data urban signals. The prior emissions from ODIAC are assumed to be “unbiased”, which yields a prior 

scaling factor of unity (𝜆𝜆𝑎𝑎 = 1). The prior uncertainty (𝑆𝑆𝑎𝑎) is simply one number representing the overall uncertainties of the sum 

and spatial spread of ODIAC emissions around Riyadh (further calculated from the inter-comparisons against FFDAS and 

EDGAR). Observational error covariance matrix (𝑆𝑆𝜆𝜆) includes the observed errors and latitudinally-integrated transport errors with 30 

a dimension of 5 × 5. Errors between every two overpasses are assumed to be independent. Our conservative results based on 

GDAS suggest that the posterior scaling factor (�̂�𝜆) and its uncertainty (�̂�𝑆) is about 1.04 and 0.26, respectively, which are comparable 

to the WRF-Chem-based emission estimate in Ye et al. (2017), given 5 satellite tracks over Riyadh. 

Estimated background uncertainty is represented by the spread of screened observations and may be reduced given large 

sampling size. However, potential errors in background XCO2 defined by other methods may affect resultant observed signals. 35 

The regional daily median background may be “biased” low and the trajectory-endpoint derived background may be “biased” high, 

compared against the X-STILT overpass-specific background (Sect. 3.3). Background values using daily median or trajectory-

endpoint methods can result in changes in mean observed emission signal by about + 0.68 ppm or – 0.77 ppm (Fig. 11b and 11d); 
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contributing to ~43 % increase and 49 % decrease in the mean observed signal using overpass-specific background (i.e., 1.57 ppm). 

Furthermore, even large impact on posterior scaling factor can be caused by using background derived from simplistic statistic. 

For instance, the posterior scaling factor (�̂�𝜆) calculated using daily median background is larger than that using overpass-specific 

background by 68 %. These results again emphasize the significant role of background definitions played in estimated observed 

signals and emission estimates. In particular, simple statistical approaches without considering the atmospheric transport may lead 5 

to erroneous conclusions.  

4.3 Limitations and future plans 

We note that the modeled and observed anthropogenic signals reported in this work may represent more of the signals during the 

wintertime. No summertime anthropogenic signal has been examined or derived, because the lack of screened observations 

reported in OCO-2 Lite file over most summertime tracks (Fig. A1) are insufficient to either determine robust background values 10 

or group/bin noisy observations. We intended to select tracks with sufficient amount of measurements passed the quality check to 

ensure the robustness in derived background and observed signals.  

Robust constraints on anthropogenic emission can be hampered by due to their alternating-sign nature and signals potentially 

comparable to anthropogenic emissions (Shiga et al., 2014; Ye et al., 2017), which are also inferred from tracks we modeled over 

Cairo with non-negligible biomass (results not shown in this paper). If examining summertime tracks, the large gradients from 15 

urban to rural due to local gradients in biospheric fluxes should be considered. Although biospheric fluxes or their resultant changes 

in XCO2 concentrations are beyond the scope of this work, many studies have been working to address this challenge. Ye et al. 

(2017) incorporated biospheric fluxes from the North American Carbon Program (NACP) Multi-scale Synthesis and Terrestrial 

Model Intercomparison Project (MsTMIP; Fisher et al., 2016; Huntzinger et al., 2013) and performed downscaling on biospheric 

fluxes using MODIS-derived Green Vegetation Fraction (GVF), to provide high-resolution biospheric flux fields and estimated 20 

background XCO2 by modeling. Besides, radiocarbon and terrestrial solar-induced chlorophyll fluorescence (SIF) data are helpful 

to isolate fossil fuel CO2 and biospheric CO2 (Fischer et al., 2017; Levin et al., 2003; Sun et al., 2017). In particular, recent studies 

have identified SIF as a better indicator/proxy of gross or net primary production than some other greenness indices over several 

different vegetation types (Shiga et al., 2018; Sun et al., 2017), which improves biospheric fluxes estimation in ecosystem models 

and benefits the interpretation of OCO-2/OCO-3 retrievals (Dayalu et al., 2017; Luus et al., 2017).  25 

X-STILT extends its way to account for transport errors and particle statistics in a column sense within LPDMs. Admittedly, 

the transport error analysis and near-field correction may work the best with the assistance of denser meteorological observing 

networks to characterize the error structures of transport errors. Increasing the density of surface networks may modify the wind 

error statistics including the wind error variances and horizontal correlated length-scale, and further impact the model transport 

uncertainties and inversed fluxes. Yet, this shortcoming is not inherent to X-STILT and applies to other means of quantifying the 30 

transport errors based on real data as well. The trade-off of choosing a city in the Middle East like Riyadh to minimize cloud and 

vegetation influences is the relatively sparse observations of surface meteorological network or aircraft. The most recent OCO-2 

version 8 Lite files include retrieved surface winds for each sounding. Unfortunately, most of those surface wind retrievals are not 

available over Riyadh, but the retrieved surface winds for other urban areas, if available, may be used for assimilation and assisting 

X-STILT error analysis.  35 

Emission evaluations for different regions can be different and affected by different observational constraints. Therefore, more 

comprehensive Bayesian inversions on the spatially distributed emissions are needed, given more sampled satellite overpasses over 

Riyadh or more sampled cities over the Middle East. We expect the inclusion of more column observations in stationary (target) 
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modes, e.g., by scanning over megacities by OCO-3 (Eldering et al., 2016), which may offer more concrete spatial XCO2 

variabilities and more benefits in flux inversions. Many nations are devoting considerable resources in launching carbon-observing 

satellites that can potentially be coordinated in a larger monitoring system (Tollefson, 2016). Given that X-STILT can potentially 

work with most satellites (given satellite-specific information like AK, PW, CO2 prior profiles, etc.), we expect enhanced capability 

in emission constraints of urban emissions by combining satellite data with X-STILT. 5 

Code availability. Modifications on initial STILT code for X-STILT are archived on https://github.com/wde0924/X-STILT.   

Appendices 

Appendix A: Four conservative criteria to select overpasses over Riyadh 

In short, we accounted for four factors, including 1) prevailing wind directions and downwind regions, 2) the portion of soundings 

with QF=0, 3) the distance between satellite track and the city center, and 4) regional wind errors in modeled meteorological fields. 10 

I. First of all, we defined a broad spatial domain (23.5° N–26° N, 46.5° E–48° E) around the Riyadh city center and count the 

total sounding numbers that fall into this domain for each overpass. This spatial domain can be determined by examining 

prevailing wind directions and locating downwind regions based on wind rose plot from radiosonde stations at the city center 

and the airport of Riyadh (with 4-character international ID of OERK and OERY) during each overpass date. Alternatively, 

forward-time model runs starting from a box around the center of Riyadh allows us to determine polluted latitudinal ranges 15 

on satellite overpass (Fig. 1). Detailed demonstrations about forward-time runs can be found in Sect. 2.4.3. As a result, total 

51 overpasses with at least one measurement fall into this designed spatial domain for Riyadh (Fig. A1).  

II. Next, we ensured the amount of screened observed data using warn levels/quality flags (QF). Because high warn level is 

generally associated with high total aerosol optical depth inferred from soundings near Riyadh, we only used quality flag to 

control data quality in this study. After selecting overpasses with > 100 soundings with QF=0, about a third of total overpasses 20 

remain. Most spring- and summer- time tracks (during Mar–Aug) fail to satisfy this criterion (Fig. A1), primarily due to high 

aerosol loading and cloud contaminations.  

III. Also, overpasses with distinct enhancements in retrieved XCO2 due to urban emissions are preferred. Near-field domain 

affected by PBL processes may extend over 100–1000 km based on the globally averaged ventilation time for PBL (Lin et al., 

2003). Due to relatively smaller SNR of extracting column signals and the preference for a more distinct XCO2 peak, we made 25 

a conservative assumption on the impacted near-field domain, which is a circle with a radius of 50 km around the city center. 

Thus, we calculated the smallest distance between soundings and city center (e.g., 24.71° N, 46.74° E for Riyadh) and rule out 

additional 3 overpasses on 01/30/2015, 01/17/2016 and 02/18/2016.  

IV. As a final step, because model results can potentially be affected by meteorological fields, we ruled out another 3 

overpasses on 04/02/2015, 11/30/2016 and 12/02/2016, where the averaged regional u- and v- wind RMS errors below 3 km 30 

are above 2 m s-1 (Fig. A1). More details on calculating wind errors are in Sect. 2.6.  

Appendix B: Wind error calculation and regression-based transport error method in X-STILT 

In terms of the wind error component (𝒖𝒖𝜺𝜺) mentioned in Sect. 2.6, two sets of parameters are used to describe, 1) 𝜎𝜎𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡 , the 

standard deviation of horizontal wind errors (root-mean-squared errors, RMSE) describing to what extent should we randomly 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-123
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 14 June 2018
c© Author(s) 2018. CC BY 4.0 License.



 20 

perturb air parcels; and 2) horizontal and vertical length-scales and time-scales (Lx, Lz, and Lt) determining how wind errors are 

correlated and decayed in space and time. We calculated different sets of wind error statistics over 3 vertical bins, i.e., 0–3 km, 3–

6 km and 6–10 km, for randomizing air parcels. To obtain 𝜎𝜎𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡 , observed winds at mandatory levels (i.e., 925, 850, 700, 500, 

400, 300 mb) from surrounding radiosonde sites (Fig. 4) are compared against WRF- or GDAS-interpolated winds. Then, we 

averaged wind errors at different mandatory levels over the aforementioned three vertical bins. In addition, wind errors are 5 

considered to be spatiotemporally correlated. To determine error correlation scales, differences in the wind errors are calculated 

and wind errors at different radiosonde stations or different reported hours (00UTC or 12UTC) are paired up based on their 

separation length- or time-scales. An exponential variogram is then applied to estimate the horizontal, vertical and temporal 

correlation scales, which are the separation scales when errors become statistically uncorrelated.  

Technical issue: The CO2 variance before the randomizations (𝜎𝜎𝑡𝑡′
2 ) can be larger than that after the randomization (𝜎𝜎𝜀𝜀+𝑡𝑡′

2 ) for few 10 

levels occasionally, due to insufficient parcel numbers (green dots in Fig. A3). Instead of flagging these data, we adopted a 

regression-based method for further accounting for those enhancements in CO2 variance. Specifically, we applied linear regression 

lines to the two CO2 variances before and after the randomizations, with weights of 1/𝜎𝜎𝜀𝜀+𝑡𝑡′
2 . That means the relatively large variance 

will be weighted less. We also tried several ways to apply linear regression (e.g., without the weights), resultant regression slopes 

can be extremely large, and the y-intercept can be negative, potentially leads to unreasonable large transport errors (in ppm) at 15 

lower levels within the PBL and negative transport errors aloft. Then, we scaled and recalculate 𝜎𝜎𝜀𝜀+𝑡𝑡′
2  based on weighted regression 

slope 𝑆𝑆𝑊𝑊𝑊𝑊𝑊𝑊 and 𝜎𝜎𝑡𝑡′
2 . The regression line indicates the overall increase in CO2 variance that serve as transport error in ppm: 

𝜎𝜎𝜀𝜀2 (𝐶𝐶𝐶𝐶2.𝑠𝑠𝑝𝑝𝑠𝑠.𝑎𝑎𝑎𝑎.𝑛𝑛) =  (𝑆𝑆𝑊𝑊𝑊𝑊𝑊𝑊 − 1) × 𝜎𝜎𝑡𝑡′
2  (𝐶𝐶𝐶𝐶2.𝑠𝑠𝑝𝑝𝑠𝑠.𝑎𝑎𝑎𝑎.𝑛𝑛),                   (A1) 

where the weighted linear regression is fitted for variances with versus without wind error component (Fig. A3). And, extremely 

large anthropogenic enhancement (e.g., >1000 ppm) for a given parcel may exist for a few cases. Thus, outliers (i.e., the upper 1st 20 

percentile of both parcel distributions before and after the randomizations) are removed for each level, before calculating variances 

in both CO2 distributions. 

Appendix C: The determinations of MAXAGL and cutoff level 

MAXAGL and a cutoff level (below which more model levels are placed) are the most important factors in determining modeled 

urban signals and can be determined based on few model trajectories starting from few satellite soundings for each overpass. 25 

Modeled PBL height reported for an individual air parcel at a timestamp, 𝑧𝑧(𝑝𝑝, 𝑡𝑡𝑠𝑠), can be very high over the upwind desert region 

near Riyadh. We determine MAXAGL to be the maximum PBL height for each individual air parcel. To determine a cutoff level, 

we calculate the averaged PBL heights over all parcels as a function of backward time, as follows 

𝑧𝑧𝚤𝚤�  (𝑡𝑡𝑠𝑠) =  1
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡

∑ 𝑧𝑧𝑝𝑝(𝑝𝑝, 𝑡𝑡𝑠𝑠)𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝=1 ,                       (A2) 

where 𝑡𝑡𝑠𝑠 represents the backward timestamp, ranging from 0 to 72 hours back. The averaged modeled PBL heights among air 30 

parcels at each timestamp 𝑧𝑧𝚤𝚤�  (𝑡𝑡𝑠𝑠) exhibit a diurnal cycle, where expected high values present during the daytime. Also, 𝑧𝑧𝚤𝚤�  (𝑡𝑡𝑠𝑠) 

typically display relatively high values where parcels are more concentrated within a day backward, and low values as parcels 

disperse outwards few days back. We ended up using the highest value of mean PBL heights over parcels and over time as a 

representative cutoff level.  

Following these algorithms, the maximum 𝑧𝑧𝑝𝑝(𝑝𝑝, 𝑡𝑡𝑠𝑠) and maximum 𝑧𝑧𝚤𝚤�  (𝑡𝑡𝑠𝑠) are 5816 m and 2420 m, for the one sounding we 35 

showed in Fig. 8. Considering potential small uncertainties in modeled PBL heights (Zhao et al., 2009), we rounded these maximum 
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numbers to 6 km and 3 km as a representative MAXAGL and cutoff level. In addition, we generalize the rules for placing column 

receptors to other seasons, based on aforementioned calculations. Maximum 𝑧𝑧𝑝𝑝(𝑝𝑝, 𝑡𝑡𝑠𝑠) and maximum 𝑧𝑧𝚤𝚤�  (𝑡𝑡𝑠𝑠) over the upwind 

region vary slightly for different soundings during different seasons. Typically, maximum 𝑧𝑧𝑝𝑝(𝑝𝑝, 𝑡𝑡𝑠𝑠) are mostly under 6 km for 

wintertime soundings in Dec, Jan, and Feb, but can reach ~7 km and 10 km for soundings in spring/fall and summer. The highest 

𝑧𝑧𝚤𝚤�  (𝑡𝑡𝑠𝑠) are less than 3 km for wintertime overpasses and ~4 km and 6 km for overpasses in spring/fall and summer. Therefore, 5 

column receptors are placed from the surface to 3 km with 100 m spacing and 3–6 km with 500 m spacing for wintertime overpasses 

with 100 parcels per level (Fig. 3e). For other seasons such as the summertime, additional receptors are placed from 6–10 km with 

1 km spacing, to ensure the model captures entire contributions from surface emissions. Although we expect similar values for 

MAXAGL and cutoff level for most soundings over the Middle East due to overlaps in upwind regions, these values should be 

recalculated when other cities are examined (Eq. A2).  10 

Appendix D: Factors that may influence observed or modeled enhancements/signals 

In Section 3.5, we integrated XCO2 enhancements along latitudes to estimate modeled and observed signals within a certain 

latitudinal band for each overpass. This latitudinal band starts with enhanced latitudinal range, then gets corrected based on model-

data latitudinal shift in XCO2 peaks, and finally extends by 20% of its length. Also, we tested the impact of different percentages 

other than 20 % on latitudinally-integrated signals. Because of relatively small XCO2 enhancements over background range, the 15 

impact due to different percentages (i.e., 10 %, 15 %, 20 %, 25 %) are relatively small—i.e., with changes of 0.03 ppm and 0.06 

ppm in averaged modeled and observed signals, respectively. These small changes self-explain that our integration latitudinal band 

is representative as it does not include a second peak or misses any large XCO2 enhancements.  

D1 Influences on observed signals (bin-widths and warn levels) 

These modeled and observed signals reported in Sect. 3.5.1 are calculated based on the uneven sampling choice for model receptor 20 

lat/lon described in Sect. 2.1.1; i.e., with smaller bin withds of 0.025° and larger bin widths of 0.05° over which urban influences 

are stronger and weaker. In addition, we tested the impact on observed signals resulted from different bin widths with constant 

values starting from 0.01° to 0.5°. Both the latitudinal variation and the overall observed signal for an overpass generally decrease 

as bin widths increase, because bin-averaged observed XCO2 enhancements get smoothed out, especially over latitudes with strong 

urban influences. Some information is lost in latitude-integrated observed signals based on our sampling choices when comparing 25 

against the signals calculated using constant bin widths such as 0.02°. Yet, binning observations based on the lat/lon of model 

receptors benefit a fair comparison with the model and our uneven sampling choices may better resolve XCO2 enhancements within 

much finer grid spacing (particularly under urban influences) in the premise of limited computational resources.  

In addition, warn levels (WLs) may impact the filtering of observed data, bin-averaged observed XCO2, defined background 

and conclusion regarding the model-data comparisons. Based on three simply tests by selecting measurements with QF=0 and 30 

additional WL filters (i.e., WL < 10, 12, and 15), observed signals increase a little, as more conservative WL filtering is applied. 

Changes in linear regression slopes and correlation between best-estimated modeled and observed signals due to sample choices 

and WL filtering are small.  

D2 Influences on modeled signals 

An additional set of hourly scaling factors (Nassar et al., 2013) can be applied to ODIAC to downscale the monthly mean emissions 35 

down to hourly values. In this study, we use monthly mean FFCO2 emissions from ODIAC and apply TIMES to only 1 of the total 

5 overpasses. Simulations including TIMES are slightly larger than those without the hourly scaling factors. Also, numbers of 
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hours may impact the modeled enhancements at each sounding/receptor. We also conducted another simulation for 12/27/2014 

event using model trajectories with only 24 hours back (different from 72 hours used in main text). The decrease in anthropogenic 

enhancements is < 0.05 ppm per sounding, which is small due to very small surface influence from far-away emission sources. 

Lastly, we report overall discrepancy in the modeled anthropogenic enhancements with or without weighting by OCO-2 prior 

profiles to be small. The difference is about 1–2 % of the weighted modeled anthropogenic enhancements, which is much smaller 5 

than impact caused by uncertainties in transport, emissions, or different setups. Note that XCO2 portion from OCO-2’s prior profile 

is zero and averaging kernel is simply unity everywhere for non-AK weighted simulations.  
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Figure 1. A schematic of X-STILT. Pink and purple dots and arrows represent the air parcels and overall air flows based on 

forward-time box runs and backward-time column runs with wind error component accounted for. Rainbow band is an example of 

one OCO-2 overpass with warmer color indicating higher observed XCO2.  

Step 1: Modeled XCO2 enhancements due to fossil fuel CO2 emissions along the track are derived from backward-time trajectories 

(and further column weighted footprint) and fossil fuel CO2 emissions from ODIAC.  

Step 2: Demonstrations of trajectory-endpoint and overpass-specific background XCO2 are labeled as black boxes. M1 include 

modeled-derived biospheric, oceanic XCO2 changes (with fluxes from CarbonTracker-NearRealTime, CT-NRT), CO2 boundary 

conditions derived from CT-NRT 3D concentration field, and prior CO2 portion from OCO-2. M3 requires enhanced latitude range 

based on either backward-time XCO2 enhancements or forward-time urban plume. M2 is statistically-derived background based 

on two previous studies, which is not shown in this figure.  

Step 3: Bin up screened observations (QF=0) according to receptor lat/lon and calculate the bin-averaged total XCO2.  Background 

XCO2 is then subtracted from those bin-averaged observed XCO2 to estimate observed enhancements.  

Step 4: Error analysis of atmospheric transport uncertainty (Sect. 2.6), emission uncertainty (Sect. 2.3.1) and observed uncertainty 

(Sect. 2.2) yield XCO2 uncertainties for each sounding/receptor.  

Step 5: Modeled and observed urban enhancements from step 1 and 3, together with transport, prior emissions errors and observed 

errors (with error covariance included, from step 4) on per sounding basis are integrated along their latitudes, to finally estimate 

the overall observed and modeled urban signals and uncertainties (Sect. 3.5).  
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Figure 2. Demonstration of interpolations on a) normalized averaging kernel profiles, b) pressure weighting function and c) 

modeled boundary conditions (derived from trajectory endpoint using CT-NRT) and OCO-2 a priori profiles, for a sounding (lat/lon 

same as column receptors). Note that column receptors are placed only up to a certain level (referred to as the MAXAGL).  

 

 

Figure 3. Upper panels (a, c, e): Demonstrations of X-STILT runs from fixed receptor or “column receptors” for Riyadh at 

1000UTC on 12/29/2014. 3D scatter plot of locations of STILT ensembles that initially released from the same coordinate as one 

OCO-2 sounding (latitude=24.4961N). Colors differentiate hours backwards (i.e., -2min, -12, -24, -36, -48, -60, and -72 hours) of 

each trajectory. Note that column receptors are placed every 100 m within 3 km and every 500 m from 3–6 km. Lower panels (b, 

d, f): Modeled fixed footprints vs. column footprints are plotted in grey. Column footprints are only weighted by interpolated 

pressure weighting functions. Only footprints values >1E-8 ppm/(µmol m -2 s-1) are indicated using the greyscale.  
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Figure 4. Map of FFCO2 emissions from ODIAC (log-scale, 1km×1km spatial grid spacing) in Dec 2014, along with 4 nested 

WRF domains. White crosses and triangle denote the radiosonde networks used to evaluate the wind fields and provide wind error 

statistics, and the center of Riyadh. Regions shaded in grey indicate are areas with small emissions (< 1µmole m-2 s-1).  
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Figure 5. Map of 0.1° × 0.1° fractional uncertainties (%) of FFCO2 emissions derived from the 1-𝜎𝜎 among 3 emission inventories 

(ODIAC, FFDAS and EDGAR). Only fractional uncertainties with large ODIAC emissions (>1 µmole m-2 s-1) using this spread 

method are displayed.  
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Figure 6. Demonstrations of overpass-specific background with an example of 12/29/2014 overpass for Riyadh. a) Forward 

particle distributions and their normalized kernel density with wind error component during OCO-2 overpass time with observed 

XCO2. Urban plumes defined based on 5 % of the max 2D kernel density from parcels’ distributions without and with transport 

errors are shown in grey and black solid lines. The intersection between the urban plume (black solid line) and the OCO-2 overpass 

(colorful dots) yields the downwind enhanced latitude range. b) Latitude-series of observed XCO2. Smooth splines are applied to 

visually reveal the variation of observed XCO2 over background latitudinal band. Screened observations with latitudes > 26° N 

and < 23° N are abandoned due to its large spread and a second large enhancement seen in other overpasses (not in this overpass). 

Final overpass-specific background XCO2 and its uncertainty are calculated as the mean and one standard deviation of screened 

observations (> 400 soundings) on northern and southern part outside the urban plume (red triangles) in this case. For other cases, 

if the northern/southern portion is defined as the downwind side, the other side (southern/northern) serve as background region.  
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Figure 7. Spatial map of backward particle distributions without and with regional wind errors (at 12, 24, 36, 48 hours back) are 

shown in orange and blue dots, respectively. Note that only particles released from receptors below 3 km are plotted. For each time 

step, particles at higher vertical levels locate to the west of those near the surface.
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Figure 8. a-c) Three tests (MAXAGL, dpar and dh) on the sensitivities of XCO2 enhancements to different model parameters, 

shown for the one sounding with the largest retrieved XCO2 for Riyadh. For vertical spacing test (c), tests with constant and uneven 

dh are carried out: case 1 with upper dh = 500 m and 3 different lower dh (50, 100 and 150m) and case 2 with lower dh = 150m 

and three upper dh (400, 500, 600m). d) A summary plot of XCO2 enhancements and fractional uncertainties (%) versus total 

particle number. Green dashed vertical line denotes the configuration used in this study. e) Background comparisons using three 

methods for 5 tracks, with trajectory-endpoint derived background (M1), statistical background derived from Hakkarainen et al. 

(2016) (M2H) and Silva and Arellano (2017) (M2S) and X-STILT overpass-specific background (M3). The amount of screened 

observations for M3 is labeled as numbers. The uncertainty of overpass-specific background is denoted as dashed yellow error 

bars.
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Figure 9. Spatial maps of anthropogenic contributions (> 10-10 ppm) with 1km×1km grid spacing from 3 selected soundings with 

all observations for the one overpass on 12/29/2014 1000UTC over Riyadh. Note that grey region stands for small contributions < 

10-4 ppm. FFCO2 contributions are calculated from surface emissions and weighted column footprint (derived from original 

trajectories without transport errors or wind bias corrections) with meteorological fields driven by GDAS (a-c) and WRF (d-f). 
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Figure 10. Latitude-series of simulated XCO2 against OCO-2 retrieved XCO2 (ppm) for Riyadh. Screened observations with QF=0 

and bin-averaged observed XCO2 are in grey and black triangles, respectively. GDAS- and WRF- derived XCO2 are displayed in 

purple and light blue dots. The latitudinal range (from ~24° N to 25.1° N) is the integration range. Smooth splines are applied to 

both modeled and observed XCO2 to visually reveal the main variations (purple and blue dashed lines and black solid line), not to 

calculate latitudinal-integrated signals.  

XCO2 uncertainties due to emissions and transport are drawn as yellow and purple ribbons. Background latitudinal band (extending 

northward to 26° N and southward to 23° N) is the same band as in Fig. 6b. Uncertainty in overpass-specific background that 

accounts for the spatial gradient in XCO2 over background latitudinal band is shown as the light green ribbon. Total observed 

uncertainties due to natural XCO2 variability, background and satellite retrievals are shown as the light grey ribbon.  

Overpass-specific background XCO2 is drawn as dark green dashed line. The displayed latitudinal range is the range for integrating 

XCO2 enhancements and their uncertainties. For this event, the background XCO2 is 397.79 ppm and integrated urban signals are 

0.83, 0.71 and 0.98 ppm, for models using GDAS, WRF and observations, respectively. The latitudinally-integrated XCO2 

uncertainties due to transport and emission uncertainties (areas of purple and yellow ribbons) are 0.41 and 0.52 ppm, respectively.  
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Figure 11. Correlation between observed and simulated anthropogenic XCO2 signals for 5 overpasses. Colors differentiate 

different satellite overpass dates. Model-data comparisons using GDAS-derived XCO2 signals and observed signals based on 

different background methods described in Section 2.4, a) overpass-specific (M3), b) daily median based on Hakkarainen et al. 

(2016) (M2H), c) normal statistics based on Silva and Arellano (2017) (M2S) and d) trajectory-endpoint (M1). Error bars along x-

axis and y-axis represent the overall observed uncertainty (represented as 1-𝜎𝜎, including XCO2 spatial variability, background 

uncertainty and retrieval errors) associated with observed signals and the overall modeled uncertainty (𝜎𝜎, including emission 

uncertainty and transport uncertainty) around modeled signals. Dotted dashed line represents the 1:1 line. Monte Carlo experiments 

are performed to fit linear regression lines based on sampled model-data signals (given best estimates and uncertainties in both x- 

and y-directions). Regression lines with positive slopes are shaded in light grey. Median values of slopes and y-intercepts from 

those multiple regression lines (with positive slopes) are used to draw a linear regression (black solid line).  
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Figure A1. Four steps to choose candidates of satellite overpasses for X-STILT modeling. Grey and black bars indicate the total 

numbers of observations that fall into a designed spatial domain (i.e., 23.5° N–26° N, 46.5° E–48° E) and numbers of screened 

observations (QF=0) for each overpass, respectively, with y-axis to the left. Orange bars indicate the closest distance (in km) 

between each sounding and Riyadh city center (24.71° N, 46.71° E), with orange y-axis to the right. Numbers labeled in brown are 

the averaged u- and v-component wind errors [m/s] below 3 km at regional scale during 3-day-period. Overpasses are narrowed 

down using at least 100 good soundings (black dashed line), within the circle of a 50 km radius around the city center (orange 

dashed line), and relatively small regional wind errors (< 2 m s-1, in brown text). In the end, we selected and examined 5 overpasses 

with their dates labeled in brown on the x-axis, via manual check.  

 

Figure A2. Time series of forward-time run interpolated latitude range for city plume, with near-field transport errors included, 

for several overpasses over Riyadh.  
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Figure A3. Demostrations of the new regression-based transport error algorithm, to resolve the techinial issue where negative 

difference in variance occur when parcels are statistically insufficient (green dots). Note that u’’ in the figure simple means 𝜀𝜀. a) 

Solid dots represent the errors in CO2 among air parcels without (𝜎𝜎𝑡𝑡′
2 ) and with wind error component (𝜎𝜎𝜀𝜀+𝑡𝑡′

2 ) for each model 

release level. Linear regression line (green dashed line) is fitted for levels where 𝜎𝜎𝑡𝑡′
2  is larger than 𝜎𝜎𝜀𝜀+𝑡𝑡′

2  (green dots). Weighted 

linear regression line (blue dashed line) is fitted for normal cases where 𝜎𝜎𝑡𝑡′
2  is smaller than 𝜎𝜎𝜀𝜀+𝑡𝑡′

2  (blue dots), with weights of 

1/𝜎𝜎𝜀𝜀+𝑡𝑡′
2 . The weighted regression line descibes the overall increase in CO2 variances due to the randomization over all X-STILT 

levels. Then, we recalculate the 𝜎𝜎𝜀𝜀+𝑡𝑡′
2  based on 𝜎𝜎𝑡𝑡′

2  and weighted regression line, as scaled 𝜎𝜎𝜀𝜀+𝑡𝑡′
2  (red squares). b) Vertical profiles 

of CO2 variances without or with the wind error component (grey or black dots), difference between 𝜎𝜎𝑡𝑡′
2  and original 𝜎𝜎𝜀𝜀+𝑡𝑡′

2  (green 

sqaures) and difference between 𝜎𝜎𝑡𝑡′
2  and scaled 𝜎𝜎𝜀𝜀+𝑡𝑡′

2  (red squares). If differeces between 𝜎𝜎𝑡𝑡′
2  and original 𝜎𝜎𝜀𝜀+𝑡𝑡′

2  are negative for 

certain lower levels, we assigned them as 0. The final transport error per level is calculated as the difference between 𝜎𝜎𝑡𝑡′
2  and 

scaled 𝜎𝜎𝜀𝜀+𝑡𝑡′
2  (red squares). Note that the notations of var(u’ +u’’) and var(u’) in the plot legend represent 𝜎𝜎𝜀𝜀+𝑡𝑡′

2  and 𝜎𝜎𝑡𝑡′
2 , 

respectively.  
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Figure A4. Demonstration of impacts of regional transport errors and near-field wind biases on parcel distributions. Original 

backward trajectories (a) and trajectories with both wind error perturbation and near-field wind corrections (b), at 0.5, 1, 2, 3, 4, 5 

hours back in time (different colors) released from latitude at ~24.43° N, along with observed XCO2. In this example, we rotated 

model trajectories based on prescribed wind biases (e.g., u = +0.3m/s; v = -1.1m/s). 

 

Figure A5. a) An example of transport error covariance matrix with a horizontal correlation lengthscale of 25 km for overpass on 

12/29/2014. b) Exponential variogram for estimating the horizontal lengthscale (km) of transport errors between each two modeled 

receptors/sampled soundings, for the overpass on 12/29/2014.   
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